
www.testars.com

Fifth Generation Scriptless and Advanced Test
Automation Technologies

By Jeff Hinz, CTO, TESTars Test Competence Centre.
with Martin Gijsen, Principal Test Automation Architect, DeAnalist.nl

Reviewed for accuracy by Christopher J. Scharer, Director VIVIT Worldwide
and Maurice Siteur, Managing Consultant, in Testing, Capgemini

www.testars.com

Table of Contents

Fifth Generation Scriptless and Advanced Test Automation Technologies 1
Table of Contents .. 2
1) Profiles .. 3
2) Introduction... 4
3) Fourth and Fifth Generation Test Automation.. 6

3a Standard Action Words... 7
3b Code Templates .. 7
3c Code Generation ... 7
3d Custom Objects... 7

4) Hybrid Approaches and Tools .. 8
5) Conclusion .. 8
6) Appendix... 9

6a Test Automation Progression.. 9
6b Third Party Tools Explained... 9
6c Code Templates .. 11

7) References... 14
7a Fifth Generation Frameworks ... 14
7b Code Generation ... 15
7c Non Legacy Tools... 16

8) Acronyms and Definitions .. 17

www.testars.com

1) Profiles

Jeff Hinz’s background;
For the last 20 years Jeff has concentrated on Software Quality Assurance,
Testing and Test Automation. Jeff was the beta testing site for Mercury’s
TestDirector version 1.5 on Windows 3.11 (1994) while at PAYCHEX. Jeff co-
wrote the press release for version 4 of TestDirector (1997). Jeff has worked at both
of HP-Mercury’s largest accounts in the United States, PAYCHEX (East) and
QWEST (West). The last 7 years Jeff has been working on the fourth generation test
automation framework and structured test method TestFrame. Jeff has developed
frameworks from the ground up with WinRunner and TestDirector. Jeff has also
used HP-Mercury’s latest offering Business Process Testing (BPT) with
QuickTest Professional and Quality Center (2004). While at QWEST we were a beta
testing site for Mercury’s Business Process Testing. BPT is essentially a
TestFrame clone, not as flexible as TestFrame, and only works with QuickTest
Professional. Jeff has certifications in TQM, CMM, software quality assurance and
test automation. Jeff’s main interests are structured testing, managed testing, test
automation, and the efficiency of Testware.

Martin Gijsen’s background;
After a university study in computer science, Martin Gijsen has been working as a test
automation architect for 10 plus years. In early 1998, Martin became involved in test
automation for unit testing. In late 1998, he was part of a project that started black box
testing of telephony switches, which are large embedded systems. Martin has extensive
experience working on extending the resulting test automation platform to cover more
features of the switches.
Martin also has experience automating the testing of diverse systems, including
messaging systems (telecom and banking/payments), web services and GUI applications.
Martin is interested in test automation for any kind of system. Martin is the Author of the
Essential Test Automation Framework, and has presented at QWE, PSTT, ICSTEST and
the Dutch Testing Day ('Nederlandse Testdag'), as well as customer conferences. Martin
is a member of the Dutch Testing SIG TESTNET and is part of the working group for
Model Based Testing within TESTNET.

www.testars.com

2) Introduction
In 2007 in need of explaining fourth generation test automation Jeff wrote a white

paper to get clients knowledgeable in basic test automation principles. For those needing
an introduction to the basics of test automation please refer to the white paper Jeff wrote
addressing the subject, Test Automation Awarenessi. To understand advanced test
automation, it is important to understand the progression/evolution of test automation
approaches (see Figure 1):

Figure 1 - Test Automation Progression

Some terms of relevance here are action word, and keyword. The original action word
concept was developed by Hans Buwalda at the Computer Management Group (CMG) of
the Netherlands to aid in testing an implementation of the Amsterdam Stock Exchange.
Action words are part of the structured test method TestFrame. An action word is a
business specific action inside a test case. The test case itself is known as an action word
test case. A keyword is the generic term for an action word but is used very loosely. For
example keywords tend to be generic in structure and often utility based. This means that
the keyword may not necessarily replicate a business specific action. An important aspect
of keywords is that they are not part of a structured test method (STM).
For completeness I am introducing the Test Action concept relating to the open source
test automation framework JUnit. Test actions are JAVA methods to be automated in the
open source JAVA test automation framework JUnit (see Figure 3). These test actions
are essentially steps within a JUnit test case. Test actions may or may not implement
business specific actions. Note that JUnit was originally intended for unit testing,
however people continue to attempt to extend/use it for functional integration and system
testing.

 1st Generation – Record and Playback

 2nd Generation – Use/reuse of functions in

test scripts

 3rd Generation – Data Driven scripts/functions

 4th Generation – Action word (keyword) scripts/func.

 5th Generation – Scriptless Automation

www.testars.com

Figure 2 - JUnit Architecture

Scriptless test automation takes two forms:
1) a test analyst not having to create an automated test script;
2) a test automation developer not having to create action word functions to implement

an action word test case.

Some companies claim scriptless technology in the aspect/sense that a test analyst can
create an action word/keyword test case by selecting the action words/keywords and
including them in their test case. This eliminates the necessity of a test analyst producing
a test automation script since the action words/keywords are implemented by a test
automation developer.

Our fifth Generation Test Automation Solution is an, enterprise proven, action based test
design and automation solution. One of the main challenges of test automation is
maintenance of the test scripts. Today’s faster release cycles, frequent changes to
functional flow, changes to technical aspects of the product, etc do result in breaking the
underlying test automation solutions. How does the automation framework keep pace
with the product changes? Maintaining huge set of scripts is not only effort intensive but
also error prone. Fifth generation takes a different approach to action based testing and
thus drastically reduces the number of scripts to be maintained.

www.testars.com

3) Fourth and Fifth Generation Test Automation
Fourth generation test automation frameworks were developed by Hans Buwalda

while at CMG in 1994 along with the action word technique, TestFrameii. In generic
terms some may refer to action words as keywords, or test actions in JAVA. HP-
Mercury’s equivalents are “business components” in their product Business Process
Testing (BPT) (See 3rd Party Tools in the Appendix). Action words are somewhat
different from keywords in that an action word replicates a business specific action.
Many times keywords end up being utility based on the 3rd party test automation tool
itself. Around 2001 CMG and Software Development Technologies (SDT) of California
implemented TestFrame at a client in North America (Norwest Financial 1999) and
started using code templates as a way to clone simple action word functions. The first
implementation of this was developed by Christopher J. Schärer (a CUE Data Services,
Inc. consultant at the time) on the Sapphire project at Norwest. Eventually an integrated
development environment (IDE) was added to the solution to help in building complex
action word functions.

Fifth generation is an action based solution, wherein action words are primarily
used as building blocks and are reusable across test cases. The action based approach
ensures that the maintenance is done at the action word level. Any change to an action
word is reflected in all the places where it is being used. To reduce the number of scripts
and maintenance overhead, fifth generation supports “Standard Action Words”, “Code
Templates” “Code Generation” and “Custom Objects” concepts that make fifth
generation a scriptless technologyiii. Each of these concepts is defined below see Figure
3.

Figure 3 - Fifth Generation Test Automation Components

www.testars.com

3a Standard Action Words

A standard action word is implemented by specifying a few inputs at the action
word definition level and saving the information. Fifth generation gets the action word
information and follows a standardized process to do the playback for test execution.
There will not be any script associated with the action word. Usual observation is 95% of
the action words are standard in a Test Automation project thus making the action words
scriptless and maintenance free.

3b Code Templates

Action words are associated with code templates that follow a standardized
process for doing the playback on an application under test (AUT). The code template is
a simple script that drives the process (See Figure 5 – Appendix).
Since a single script (code template) is associated with huge number of action words, the
maintenance of one script will ensure that all the action words are maintained
automatically.

3c Code Generation

Action words can be associated with specific Code Templates. When this event
occurs the test automation developer can then automatically generate the action word
function by selecting code generation. Once the action word function has been
automatically generated it can be viewed and or edited in the integrated development
environment.

3d Custom Objects

Fifth generation provides default playback implementation for many standard
objects making it easy and faster to implement action words. Today, applications are
developed with multiple technologies and also use third party controls to make the
development faster and efficient. To do playback on these third party controls or controls
that do not have a default implementation in fifth generation, automation engineers will
write test automation code. Fifth generation provides a way to organize this code so that
the same code is reusable across the test automation framework wherever a similar
control is used. Users keep the automation code for these controls in custom objects. And
any action word can use this custom object to do playback on a similar object/control in
the application. Single point of implementation/code for custom objects makes it easy to
maintain.

www.testars.com

4) Hybrid Approaches and Tools

Some approaches and tools are called 'hybrid' in that they support multiple generations of
automated testing. At first glance, it seems beneficial that several of the approaches are
supported because different people like different approaches and such tools could also
support a transition period. But some further thought reveals the other side of this coin.
Data-driven tests, for example, represent a complete test case as one line of test input.
Such a test can easily be represented by a single high level keyword (that is given the
same test data). It is therefore trivial to use keyword-driven tools for data-driven tests. In
fact, it can be argued that keyword-driven supports or includes data-driven tests but is
more powerful. This brings us to the essence of the question: Should older generation
approaches and tools be used at all? The evolution of test automation was largely driven
by the need that automated testing would be easier to use and that there would be less
maintenance effort. This is what keyword-driven being 'more powerful' really means.
Supporting an older generation means allowing people to use an approach with greater
risks to the project in terms of time-to-market, cost and quality.
Another issue becomes clear when we consider the analogy with construction. Houses are
commonly built using durable materials like concrete, bricks and glass. They used to be
built with straw, clay and wood. And if these other materials result in a house that suits
your needs, then it is still fine to use them. But using clay will not result in a house that
meets the needs of most people. So we do not use it. Neither will we combine materials
like straw and clay with concrete and bricks, for another reason: Even assuming that the
materials can be combined at all, using them will result in a more complex structure that
is harder to fully understand and therefore harder to design, build and maintain. The same
goes with automated testing: The newer, keyword-driven approaches and tools are much
more effective. A hybrid approach or tool is perhaps more of a project risk than a good
thing.

5) Conclusion
In fourth generation the typical reduction in maintenance is up to 70% over second

and third generation test automation solutions. In fifth generation you are reducing your
maintenance by up to 100% since there is no need to maintain the action word functions
(scripts). However there is still the need to maintain the test cases themselves. The action
word functions are simply built on the fly and deleted during teardown, when the test is
complete. Fifth generation provides a superior automation framework with which test
teams can automate the testing of applications with minimal code and less maintenance
across the product cycles. It is the combination of the “Standard Action Words”, “Code
Templates” and “Code Generation” concepts that makes fifth generation scriptless.
“Poor software architecture is one of the biggest factors in test automation project
failures”iv.

www.testars.com

6) Appendix

6a Test Automation Progression

Hans Buwalda is the primary inventor of TestFrame and the action word technique.
Some explanation of inferred principles (test automation progression);

 1st Generation – Record and Playback
 2nd Generation – Use/reuse of functions in test scripts
 3rd Generation – Data Driven scripts/functions
 4th Generation – Action Based scripts/functions
 5th Generation – Scriptless automation.

6b Third Party Tools Explained

HP-Mercury has different functional test tools based on the clients needs. In the
beginning they created XRunner for Xwindows (UNIX) record and playback (1992). In
regards to test automation progression, their main record and playback tool is now known
as QuickTest Professional (QTP). Within QTP there are generic keyword capabilities
along with data driven features. For example you can create a basic keyword and QTP
has a built-in excel spreadsheet to data drive parameters in your keyword. Note all other
solutions use Microsoft’s Excel outside the tool. For example the current version of
Logica’s TestFrame has a toolbar add-in for Excel and the 3rd party test tool is agnostic.
Embedding Microsoft Office in your application is a poor design decision. This is simply
because you are adding another layer of overhead. HP-Mercury has a test management
tool originally known as TestDirector (1994) now known as Quality Center (QC). HP-
Mercury’s fourth generation test automation solution or TestFrame equivalent came out
in 2004 in the form of Business Process Testing (BPT). BPT is a Quality Center add on
that requires QTP. Within BPT an analyst can develop “business components” the
TestFrame equivalent of an action word. Note that in QC 10.0 configuration management
is now built-in (see Figure 4).

www.testars.com

Figure 4 - HP-Mercury QC/BPT/QTP Setup

Quality Center

10.x

(Test Management)

Test Results are uploaded back

in Quality Center

Business driven

test case on the

system-under-test

QC Invokes Test
Case from QTP

Business Process Testing (BPT)

10.X

(4G Business process modeling

tool)

QuickTest Professional (QTP)

10.X

(R&P Test tool)

System Under Test

QTP invokes Business Components

(Business specific action, re-usable

test automation functions partitioned
by business process)

Built-in

Configuration
Management

Built-in

Spreadsheet

Custom
Libraries

BPT
Resources

www.testars.com

6c Code Templates

'START TEMPLATE
'@ GENERATED HEADINGS
Function GuiEntry() as Long

'Declare Variables.
'@ GENERATED CONSTANTS - DECLARATION

Static FunctionName As String
Dim ObjectNames(MAX_PARAMS) As String
Dim ObjectTypes(MAX_PARAMS) As String
Dim CheckDescriptions(MAX_PARAMS) As String
Dim FirstParm As Long
Dim LastParm As Long
Dim x As Long
Dim StartOfGrid As Long
Dim EndOfGrid As Long
Dim StartTime As Long
Dim apiCall As String
Dim ObjectError As Long
Dim returnValue As Long

'Initialize Variables.
'@ GENERATED CONSTANTS - INITIALIZATION

FunctionName = "GuiEntry"
FirstParm = gFirstParm
LastParm = 0
StartOfGrid = 0
EndOfGrid = 0
StartTime = 0
apiCall = ""
ObjectError = FALSE

tf_FunctionEntry(FunctionName, StartTime)

' set to appropriate Tab (If any)
If (TabName <> "") then

ObjectError = tf_SetTab(TabName, TabWindow, apiCall)

If(ObjectError > 0) then
tf_CallStatus(FunctionName, ObjectError, apiCall)

www.testars.com

tf_PrintF1Error(FunctionName, TabName, "Could
not set Tab!")

End If

End If

' check to ensure we still want to execute Action Word
If (tf_CriticalChecks(WindowName) = FALSE) then

returnValue = FALSE
goto EndFunction

End If

' set the Object Name and Type (usually the "class")
x = gCount + FirstParm

' Start-of field object, type, description
'@ GENERATED CODE NON-GRID
'@ GENERATED CODE GRID

' End-of field object, type, description

' Set LastParm
LastParm = (x - 1) - gCount

' Find the StartOfGrid (If any)
tf_CalculateGrid(FirstParm, TableName, LastParm, ObjectNames,

ObjectTypes, CheckDescriptions, StartOfGrid, EndOfGrid)

' Set Values into Objects
tf_StandardSet(FirstParm, LastParm, ObjectTypes, ObjectNames,

CheckDescriptions, StartOfGrid, EndOfGrid)

' If Acknowledgement message appears, press MsgButton
If (MsgWindow <> "") then

If (tf_ExpGuiWin(MsgWindow ,30) = TRUE) then

'# press the button (If one was requested)
ObjectError = tf_PressButton(MsgButton, apiCall)

If(ObjectError > 0) then

tf_CallStatus(FunctionName, ObjectError, apiCall)
tf_PrintF1Error(FunctionName, MsgButton, "Could

not press button!")

www.testars.com

End If '(ObjectError > 0)

End If '(tf_ExpGuiWin(MsgWindow ,30) = TRUE)

End If '(MsgWindow <> "")

tf_FunctionExit(FunctionName, StartTime)
returnValue = TRUE

EndFunction:

'@ GENERATED CODE - RETURNVALUE

End Function
'@ GENERATED FOOTERS
'END TEMPLATE

Figure 5 - Example Code Template GUI Entry

www.testars.com

7) References

As a statement of legitimization I suggest reading “Automate your testing, Sleep
while you are working” from Maurice Siteur of Capgemini NLv. In chapter 9 Maurice
suggests there are 9 levels of use regarding capture and playback tools:

 Level 1 – Capture and Playback (using only the functionality of the tool);
 Level 2 – Capture and Playback (modifying for data-driven testing);
 Level 3 - Capture and Playback (modifying for continuity);
 Level 4 – Data-driven testing (pure);
 Level 5 – Data-driven testing (adding information to the data file);
 Level 6 – Test Application (action words);
 Level 7 – Test application with test design;
 Level 8 – Complete test application;
 Level 9 – Test Generation.

One good source of information is Test Automation, From Record/Playback to
Frameworks, from John Kent of Simply Testing at EuroSTAR 2007. John is very
knowledgeable regarding test automation code generation. John Kent in his series of test
automation articles provides evidence that in large systems “we need to automate the
building of the automation codevi”.

7a Fifth Generation Frameworks

LogiGear

Hans Buwalda invented fourth generation test automation frameworks in 1994
while at the CMG test research centre. We consider Hans the godfather of fourth
generation. It is Hans’ reference that we use to describe the generations of test
automation progression. LogiGear extended the TestFrame Engine and now has a fifth
generation test automation tool and framework known as TestArchitect. Note that
TestArchitect is based on the original TestFrame Engine5 code. TestArchitect has been
implemented in hundreds of clients globally.

Logica

CMG created the original TestFrame Engine and framework in 1994. The TestFrame
Engine also known as Engine5 is essentially a controller written in C++ and implemented
as a Microsoft Windows .dll. The TestFrame engine is very portable and works with any
3rd party tool and code. You can use anything from HP-Mercury’s QuickTest

www.testars.com

Professional or Microsoft’s Visual Basic. TestFrame is not a tool, and a 3rd party record
and playback tool typically needs to be provided to recognize the system under test. The
TestFrame engine is what we call a DIY kit. It does not generate code and all the action
word functions have to be manually coded by a test automation developer. TestFrame and
the action word technique are copyright of Logica. Currently all the testing brains behind
TestFrame and all the testing books have left the company except for Chris Schotanus.
Recently Chris has updated and published the next edition of the TestFrame book. The
TestFrame STM has been implemented in over 1000 testing projects globally. Please
refer to the whitepaper written by Hans Buwalda and Maartje Kasdorp “Getting Test
Automation Under Controlvii” for examples of action words.

Software Development Technologies (SDT)
SDT originally was the de-facto North American arm of the CMG testing

practice. SDT and CMG partnered on testing projects in NA and Europe. SDT received
the original TestFrame Engine5 code as a result and rebranded it Unified TestPro in
North America. They added Christopher J. Schärer’s action word management and
automated build facility. Eventually support was added for Rational Visual Test and the
object recognition technology is now part of the tool. A maintenance facility in
Hyderabad, India was added and the framework was extended to the current 5G level.
There are many new components including a test management facility. SDT has even
installed a custom version of the tool at Microsoft in Visual Basic. Unified TestPro has
been implemented in hundreds of clients globally.

Worksoft
Worksoft is a company created by Linda Hayes originally of the record and

playback tool company known as AutoTester. Worksoft has created what they consider a
“codeless” viii test automation tool and framework known as Certify. Linda Hayes has
accumulated code libraries over the years on hundreds of engagements with clients. The
result is that many of the necessary generic functions to test an application have already
been implemented by the Worksoft team. Worksoft doesn’t like the term “keyword” as it
has record and playback connotations. There are some advanced technologies in place
here regarding test automation. They definitely have scriptless technology from the test
analysis point of view and fifth generation capability.

7b Code Generation

IDT – Innovative Defense Technologies

Elfriede Dustin has been doing some advanced research into the latest in
automated software testing technologies. IDT has created a Test Automation Framework
(TAF) that is based on the original now open source STAF framework. It is difficult to
discern which generation of framework to classify the IDT TAF. However since STAF is
technically fourth generation it starts there, and includes some leading edge components

www.testars.com

for automated test code generation. The IDT framework is based on all open source
component technologies.

Google Tech Talk:
GTAC 2008 Advances in Automated Software Testing Technologies.

Book:
Elfriede Dustin, Implementing Automated Software Testing (March 2009) ISBN-
9780321580511.

Simply Testing
Simply Testing is a company that has been in the software testing industry since

1995. John Kent has written about advanced test automation frameworks and test
automation code generation in Professional Tester magazine and at EuroSTAR. Simply
Testing’s line of products includes a framework, the Advanced Test Automation
Architecture (ATAA) and a test automation code generator TestCoda.

7c Non Legacy Tools

Ranorex
Ranorex is Software Development Company that provides the next generation of

test automation tools. When we say non-legacy, legacy means record and playback, or the
use of libraries that can be included in your application. The tools are based on the .net
platform and provide support for multiple technologies.

QualiSystems
QualiSystems is test automation pioneer founded by Aryeh Finegold of Daisy Systems
and Mercury Interactive fame. We consider Aryeh the Godfather of test automation tools.
Developers of the TestShell product suite, QualiSystems has taken the non-legacy
approach to test automation tools as well. There is also some very unique functionality
here along with scriptless test automation. QualiSystems' TestShell is an end-to-end test
automation solution compatible for testing virtually any hardware, device or embedded
system. TestShell provides code free test authoring, automatic test execution, and
comprehensive test reporting and analysis.

www.testars.com

8) Acronyms and Definitions

Action word – an action word is Logica’s version of a keyword within a test
automation framework. Action words are business specific actions developed by a
test analyst then implemented by a test automation developer. Action words are used for
both manual and automated testing.
AutoTester – A company that produced the first commercial test tool for the PC (on MS-DOS). Their tool
was also named AutoTester and eventually worked on Microsoft Windows as well.
BPT – HP-Mercury’s fourth generation test automation framework and tool.
Capture and Playback – an inference to test automation tools where a test analyst/engineer records the
required actions for a specific application/system under test and saves the steps in a journal file. The script
is typically used to model/implement a test case.
CAD – Computer Aided Design.
CAST – Computer aided software testing.
Certify – Worksoft CTO Linda Hayes latest codeless functional test automation tool and framework.
CMM – is a concept that was developed in the field of software development and which provides a model
for understanding the capability maturity of an organization's software development business processes.
Codeless Automation – Worksoft’s description of their test automation tool (Certify) and framework.
CVS – Open source versioning tool, Concurrent Versioning System.
ECAD – Electronic Computer Aided Design.
Hybrid Test Automation Frameworks – hybrid test automation frameworks, are a confusing term where
some practitioners in the field of software testing are declaring frameworks that incorporate any
combination of data driven, keyword driven, and library frameworks to fall under this category.
IDE – Integrated Development Environment.
JUnit – Open source test automation framework where the focus is primarily unit testing of JAVA
applications.
MBT – Model Based Testing.
MTPF – Minimal Test process Framework.
QTP – HP-Mercury’s functional record and playback test automation tool.
Quality Center – HP-Mercury’s test management tool.
RBT – Roles Based Testing.
Record and Playback – see Capture and Playback.
Scriptless Automation – Advanced Test Automation technology where test automation scripts are built
automatically based on a set of predefined rules and parameters such as GUI object libraries and generic
code templates.
RUP – The Rational Unified Process.
STAF – Open source keyword/data driven test automation framework written by Carl Nagle of the SAS
Institute loosely based on TestFrame.
Structured Test Method – A mature testing process with a well developed testing life-cycle including
structured test management and sometimes risk based. Typically associated with TestFrame and TMap.
Note that RUP and MTPF are not risk based.
TAF – test automation framework.
TestArchitect – LogiGear CTO Hans Buwalda’s latest fifth generation functional test automation tool and
framework.
TestFrame – Logica’s structured test method and fourth generation test automation
framework. Invented by CMG of the Netherlands.
Testware – Everything that is required for testing that can be reused at a later stage, I.E. test case test
scripts etcetera.
TAKT – Sogeti’s test automation framework, test automation knowledge and tools.
TSL – HP-Mercury’s test script language, a C language derivative used in the WinRunner R&P tool.
TQM – Total quality management is the organization-wide management of quality.
TMap – Sogeti’s structured test method invented by IQUIP of the Netherlands, test management approach.
Unified TestPro – Software Development Technologies latest fifth generation functional test automation
tool and framework.

www.testars.com

For further information about Advanced Test Automation Frameworks, please contact
Jeff at TESTars, send an email to jeff@testars.net or Martin at martin@deanalist.nl .

Copyrights:

ATAA and TestCoda are copyright of Simply Testing

Certify is copyright of Worksoft.

The Ranorex tools and suite are copyright of Ranorex.

TestArchitect is copyright of LogiGear

TestFrame and action words are a copyright of Logica.

TestShell is copyright of QualiSystems.

QuickTest Professional, Business Process Testing and Quality Center are trademarks of HP-Mercury.

Unified TestPro is copyright of Software Development Technologies.

i Test Automation Awareness, Jeff Hinz, LogicaCMG, 2007
ii Integrated Test Design and Automation Using the TestFrame Method, Buwalda Et al., 1999, ISBN -
0201737256, Rotterdam
iii Unified TestPro Scriptless Technology, Vinay Thandra, SDT
iv Test Automation, From Record/Playback to Frameworks, John Kent, Simply Testing, EuroSTAR 2007
v Automate your testing, Sleep while you are working, Maurice Siteur, 2005, ISBN – 9039524424, Den
Haag
vi Ghost in the Machine, Part 5, John Kent, Professional Tester 2004
vii Getting Test Automation Under Control, Hans Buwalda and Maartje Kasdorp, CMG, 1999
viii Where Did The Code Go?, Linda Hayes, Worksoft

